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x z agrees with the statement by Ziman, x z being in the range 
0.2 to 0.25. 

It seems tha__t melting begins in both solids if the amplitude 
of vibration (u2) v2 reaches a value of about 12% of the radius 
of the space occupied by the atom. 

The melting parameters considered here have been 
averaged over all directions of motion, and the observed 

. _ _  

2 and 2 merits further study. anisotropy between u c u a 

Table 2. X-ray Debye temperatures 0 a and 0 c [estimated in 
Fig. l(b)], and Oar [calculated with formula (6)], values for r 

[defined in (5)], and for x and x z [defined in (3) and (4)] 

O a (K) Oc (K) Oar (K) r (A) x x z 

Zn 257 158-3 206.7 1.554 0.12 0-21 
Cd 161 99.0 129.4 1.740 0.12 0.21 
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Abstract 

The fundamental basis for alternative expressions for the 
phase probability distributions related to anomalous- 
scattering measurements is examined. Exact, general ex- 
pressions are derived and these are then simplified for the 
special situations that normally apply in practice. 

North (1965) and Matthews (1966) have described methods 
for incorporating the phase information from anomalous- 
scattering measurements into the isomorphous-replacement 
method in a way that properly takes into account the higher 
accuracy that is intrinsic to measurements of anomalous 
differences relative to those of isomorphous differences. 
These methods have proven to be very effective in protein 
crystallography. However, uncertainty has persisted as to the 
correct form for the error function to be used in phase 
probability distributions. Although North and Matthews 
formulate the problem somewhat differently, after using 
similar approximations in their derivations they seemingly 
arrive at the same result. Yet, varying interpretations have 
been put forward regarding valid forms for use in practice. 

The purpose of this note is to clarify the basic origin of the 
alternative error expressions and to derive the appropriate 
expressions without approximation. Expressions that can be 
cast in the simplified representation of Hendrickson & 
Lattman (1970) are then seen to be based on an alternative 
error model rather than on questionable approximations. 

Moreover, the exact expressions given here may-be  
required in neutron, diffraction where anomalous-scattering 
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effects can be quite large. Expressions appropriate to phase 
information from anomalous scattering without isomorphous 
replacement are also given. 

An isomorphous-replacement experiment that includes 
anomalous-scattering measurements presents, for each 
reflection hkl, three observations: the structure amplitude Fp 
from the native or 'parent' crystal structure and the structure 
amplitudes F+, and F~-H at hkl and its Friedel mate hkl 

_ o  

~ J F p  

Fig. 1. Vector diagram showing relationships among the structure 
factors from an isomorphous-replacement experiment that 
include anomalous-scattering measurements. The vectors 
denoted F~ff and_Sh* are complex conjugates of structure factors 
for reflection hkl and all other vectors are structure factors for 
reflection hkl. 
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respectively, from the isomorphous heavy-atom derivative. 
Provided that the structure is known for the isomorphously 
added heavy atoms in the derivative, the heavy-atom 
contributions to the derivative structure factors can be 
calculated. The contribution from the real part of the heavy- 
atom scattering is denoted fn = f n e x p ( i ~  t) and the 
imaginary part for hkl  is I~ + = f n e x p [ i ( ~  + co)] while that 
for hki is t~ h = fin e x p [ - i ( ~  + co + n)]. If all heavy atoms are 
of the same kind, co = n/2. In the absence of any errors, these 
data suffice to specify the desired native phase angle, (O "̀. The 
vector relationships among these structure factors are shown 
in Fig. 1. 

Of course, errors are not absent and must be reckoned 
with. Blow & Crick (1959) introduced a treatment of errors 
in the isomorphous-replacement method that can equally 
well be applied to anomalous-scattering data. Each phase 
value is assigned a probability of being correct, 

P((O) = N exp [ e2((O)/2EZ], (1) 

based on the discrepancy e((o) between theory and obser- 
vation at the particular phase angle (O and the pertinent 
standard deviation of errors E. Blow & Crick define the lack- 
of-closure error for isomorphous replacement as 

IF`" + fnl = F`" n + eiso((o`"), (2) 

but Hendrickson & Lat tman (1970) showed that an 
alternative definition, 

IF,, + ful 2 =F2eu + elso((o`"), (3) 

is equally plausible and has the advantage of producing a 
phase probability distribution that can be simply represented 
by four phase coefficients so that 

P((O) = N exp (A cos (O + B sin (O + C cos 2(o + D sin 2(o). (4) 

Notice, though, that whereas the estimate of error for (2), 
E, is usually only slightly dependent on reflection intensity, 
the comparable value for (3), E ' ,  depends directly on F`" u 
and this complicates the estimation of expected error. 
However, Blundell & Johnson (1976) have shown (equation 
12.24) that, for Gaussian distributions of error, E '  is given 
directly by E and Fen. Their result generalizes to E '2 = 3E 4 
+ 4(FZpn + azr,,,,)E z when errors in F,,, n are taken into 
account. 

Alternative error definitions analogous to (2) and (3) can 
also be made in the case of anomalous scattering. Thus, 

(IF`" + f .  + 8+1 --  IF`" + fa + 8h* l )  

= (F+en - F;n)  + G,o((0~,) (5) 

o r  

(IF`" + f,, + 6~-I 2 - IF`" + f,, + 8h* l  2) 

= (V`"+n 2 --Fb-d) + ¢'no((o`")" (6) 

In order to evaluate .the lack-of-closure errors given in (5) 
and (6) for anomalous-scattering phase information, one 
must first analytically express the left-hand sides of these 
equations in terms of known quantities. In doing so it is 
helpful to abbreviate with the following definitions: F~ = IF`" 
+ f n I , F  + = IF,,, + fn + qS+l and F c = IF`" + fn + qSh*l. Then, 

in the general case of arbitrary combinations of heavy atoms, 

and 

F + 2 =  F~ , + f g  + ~n + 2F`" f n c o s ( q / - ( o ` " )  

+ 2Fp fn cos (~  + co - (op) 

+ 2 f n  fn  cos co (7) 

F;~=F~+ d.~ + ~ + 2F. f,, ~os(,/,- (O "̀) 

- 2F ,  fH cos (¢  + co - (O "̀) 

- 2 f ,  fu cos co. (8) 

Thus, the left-hand side of (6) is 

(F+2--  F~-2) = 4Fp fH cos(qJ + c o -  (O`") + 4 f ,  fH cos oJ. (9) 

Notice that if the relationships F~ sin y = Fp sin (¢  - (O`") and 
F~ cos y = Fp cos ( ~ , -  (O`") + fH [equations (18) of Matthews 
(1966)] are used, then (9) can be expressed in terms 
equivalent to those in equation (16) of Matthews (1966). The 
left-hand side of (5) can also be expressed in terms of (7) and 
(8) if one notes that 

(Fc  +z --  F c  z) 

(F  + -- F~-) = IF +2 + Vg z + 2(F  +2 FgZ) 'n l l  n . (10) 

The numerator in (10) is given by (9) and the denominator is 

(F + + r e ) =  {2Fc z + 2f~ + 2[Fc 4 + f~ + 2Fc z fn  2 

where 

- 4Fc2 fn2 cos2(q/+ c o -  (O¢)1'/2} '/2, (11) 

F c = [ F  2 + f 2  n + 2F`" f n c o s ( q / - ( o ` " ) ]  'n  

and (oc is the phase of F e + fn. 
Equations (9), (10) and (1 I) provide general and exact 

solutions for the lack-of-closure error as defined by either 
alternative (5) or (6). However, simplifications apply in most 
practical applications. Usually all heavy atoms will be of the 
same kind so that co = n/2 and in most situations 6 n will be 
small compared with Fc. These simplifications result in 
expressions that compare with those of North and Matthews 
(1966). 

In the case that co = n/2, (9) reduces to 

(Fc +2 - F~ 2) = -4F`"  fin sin (~, - (op). (12) 

Moreover, good approximations can be made for (11) i f f i  n is 
small compared with F~. The expected value with respect to 
angle can be used to approximate (11) and this takes on a 
simple form if 64,~ F~. To the slightly coarser approximation 
that fn  z ,~ F~, (11) simplifies further: 

(F  + + F7) _ (4Fc z + 2f~) '/2 ~ 2 F  c. (13) 

These approximations are good to better than 1% and 2% 
respectively if f n  < O. 2 F  c. Then, on defining A n = (F  + - Fff) 
and using (12) and (13) to evaluate (5), one obtains 

2V`" f n  
eano ((O`") ~ - -A  H sin ( ~ -  (O`"). (14) 

F~ 
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Apart from slight differences in notation, this is equation (9) 
of Matthews (1966) and is equivalent to North's equation 
(6). Of course, with modern computers there is little to be 
gained by using the approximation of (13) and the exact 
formula with (F + + Fg) rather than 2Fc should be preferred. 

If (12) is substituted directly into (6), one obtains 

Eano  ( ~ p )  _ +2 = ( F ~ , n - - F ~ ) - 4 F e , ~ n s i n ( ~ - q h , ) . .  (15) 

Errors from model (6) are related to those from model (5) by 
~a.o = (F~ + + Fc) ea.o + An(F  + + F~ -- 2F[,n). On evaluating 
the appropriate expected values at best estimates of correct 
phase angles, standard deviations for use in (1) are related as 
E '2 _~ 4{(F2n + 0 .2 + (AF~n))E 2 + (A2) (AF2n)} ,  where FpH 
(z/F~n) --- ((Fc - F~n)2). Hence, E '  values will be very 
sensitive to intensity whereas E values are not. Another, but 
essentially equivalent, error can be defined by dividing 
through both sides of (15) with (F+n + Fb-n). Then 

2Fe fin 
ea~o ((pp) = --An sin ( ~ -  (pc), (16) 

F~,n 

, 1 + Fen) and where the additional definitions that Fen - 7(F{, n + 
t t  t t ea,o(tp) --- eaoo(tP)/2F~, n are used. This is the same expression 

as that suggested by North (1965) to be valid in practice and 
given textbook legitimacy by Blundell & Johnson (1976) 
(equation 12.18). Expectation values for the errors defined in 
(15) and (16) are related as E ''2 = E'Z/(Fe n,2 + a2b,). Hence, 
provided that errors in F~, n are insignificant compared with 
the magnitude of F[, n, (16) and (15) will give identical phase 
probability distributions. Thus, at least in the absence of 
error in F~,n, (16) is seen to be an exact consequence of an 
alternative error model rather than a questionable approxi- 
mation for (14). The effect of errors in Fen is to sharpen 
unduly the probability distribution from (16) relative to that 
expected from the basic error model given by (15). It should 
be possible to compensate for this effect by modifying the 
standard deviations for use with (16) so that E ''2 = 

2 VF,2 , =  (e ''2) (F I, 2 + a r;,d ~,n, although the singularity at F~, n 0 
cannot be avoided except in the absence of error. 

Paralleling the analogy between (3) and (6), both (15) and 
(16) can be expressed in the simplified representation of (4) 
and the phase coefficients for (16) have already been given 
by Hendrickson & Lattman (1970), whereas the expressions 
derived from (2) and (5) cannot be so expressed. There is a 
practical advantage to using (16) rather than (15) since 
standard deviations will then be relatively independent of 
structure-factor amplitudes and this will facilitate the 
numerical evaluation of these crucial parameters. This 

suggests that a relationship analogous to (16) but derived 
from (3) might be advantageous for isomorphous- 
replacement information. 

Error expressions analogous to (5) and (6) can also be 
developed for phase information from anomalous scattering 
without isomorphous replacement. In this case F e is not 
measured and it is the phase of F m that is desired. The 
amplitude Fj, n is also unobservable, but this can readily be 
estimated, from the relationship I Fen + 5n+t 2 + IFen + ~H*I 2 
= Fg~ + Fb-n z, to be 

= ,  +~ F;d)_ a~),:~ Fen [r(F~n + . (17) 

To the level of approximation that 62 ~ F~n, F~ n - (F+H + u 
Fb- n) gives a good estimate of Fro, but Fin  will always be an 
underestimate. In general, (17) is to be preferred both here 
and for use in (2) and (3) for isomorphous-replacement 
calculations. The relationship analogous to (9) for the case of 
anomalous scattering without isomorphous replacement is 

(F+2-F~-2)=4FpHanCOS(~t + co--tpen). (18) 

Then if Fpn is identified with F c in (11), (11) together with 
(10) and (18) suffice to provide the lack-of-closure errors for 
this case. Results for the special case that co = ~z/2 can be 
found by substituting ~pn for (pp and Fen for F? and F c in 
(14), (15) and (16). Then, to the level of approximation that 
a 2 ~ FZn, (14) and (16) both reduce to 

~;ano (~OpH) = t;ano ((PPH) ~'~ --Z~H - -  2~H sin (gt - ~0en ), ( 19 )  

which is equivalent to equation (22 )o f  Matthews (1970). 
Obviously, apart from changes in notation, (17)-(19) apply 
equally well to a native structure containing anomalous 
scatterers. 

I thank Brian Matthews for his helpful criticism of the 
manuscript. 
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